HERAKLION, CRETE | GREECE 2 6 - 3 0 JUNE 2 0 2 3 ## **ABSTRACT:** ## Hydride ion defects in barium indate zirconate perovskite Toriumi Hajime¹, Genki Kobayashi², <u>Yoshitaka Aoki</u>¹ ¹Faculty of Engineering, Hokkaido University, N13W8 Kita-ku, Sapporo, Japan. Metal oxyhydrides, including the hydride anion (H⁻), are rare but have recently become appealing hydrogenation catalysts for ammonia synthesis^[1-3] and CO₂ conversion^[4, 5]. H⁻ is simply the counter form of H+, but the electrochemical activity of the former could clearly be distinguished from that of the latter because the high redox potential of H₂/H⁻, at -2.3 V versus a normal hydrogen electrode, may facilitate electron donation to adsorbed molecules. [2, 6] The oxyhydrides must be important Hion conductors because the large polarizability and extraordinary ion-size flexibility of H⁻ anion is advantageous for the long-range diffusion. On account of the transferability and redox activity of the H⁻ anion, therefore, materials with significant H⁻ ion conductivity are promising options not only for catalytic substances but also for ceramic electrochemical devices, [7, 8] such as co-electrolysis cells[9-11] and membrane reactors,[12] Cubic perovskite type barium zirconate, BaZr_{1-x}In_xO_{3-δ} (0<x<0.7), have been intensively studied for their excellent proton conductivity and tolerance to high p_{H2O} atmosphere. Herein, we demonstrated that the incorporation of H⁻ ion defects in BaZr_{0.5}ln_{0.5}O_{2.75} (BZI55) in H₂ atmosphere at low water partial pressure (p_{H2O}). BaZr_{0.5}ln(III)_{0.5}O_{2.75}, as the parent phase, was readily hydrogenated via simple H2 gas annealing at 800 °C under ambient pressure with the reduction of In atoms and insertion of vacancies and H- ions into O sites bridging two In atoms (O_{In}In). The resultant BaZr_{0.5}In(II)_{0.5}O_{2.25}H_{0.5} phase exhibited relatively high hydrogen permeability due to the mixed H⁻ ion/electron conductivity. DSL2023 1|2 ² Institute of Physical & Chemical Research RIKEN, Hirosawa 2-1, Wako, Japan. [1] H. Toriumi, G. Kobayashi, T. Saito, T. Kamiya, T. Sakai, T. Nomura, S. Kitano, H. Habazaki and Y. Aoki, Chem. Mater., 34, 7389 (2022). DSL2023 2|2